Feral honey bees in pine forest landscapes of east Texas

نویسندگان

  • Robert N. Coulson
  • M. Alice Pinto
  • Maria D. Tchakerian
  • Kristen A. Baum
  • William L. Rubink
  • J. Spencer Johnston
چکیده

In 1990 the Africanized honey bee, a descendent of Apis mellifera scutellata, was identified in south Texas [Hunter, L.A., Jackman, J.A., Sugden, E.A., 1992. Detection records of Africanized honey bees in Texas during 1990, 1991 and 1992. Southwestern Entomol. 18, 79–89]. The potential impact of this immigrant on feral and managed colonies was the subject of considerable speculation. The goal of this study was to investigate the diversity of feral honey bee races in pine forest landscapes of east Texas, subsequent to immigration of A. m. scutellata. The specific objectives were (i) to assess the immigration of A. m. scutellata into east Texas pine forest landscapes and (ii) to evaluate the suitability of the pine forest landscape to feral honey bees. This mesoscale landscape study was conducted on the Sam Houston National Forest in east Texas. Swarm traps and aerial pitfall traps were used to monitor feral honey bees. Spatial databases were used to evaluate suitability of the pine forest landscape for honey bees. Scoring mitochondrial DNA type (mitotypes), we found representatives of A. mellifera scutellata, eastern European, western European, and A. mellifera lamarckii races in pine forest landscapes of east Texas. The conclusions that follow from this aspect of the investigation are (i) honey bees are a ubiquitous component of the pine forest landscape in east Texas, (ii) mitotype diversity persists subsequent to the immigration of A. m. scutellata, and (iii) A. m. scutellata is an added element of the mitotype diversity in the landscape. To evaluate quantitatively the suitability of the pine forest to feral honey bees, we used a spatial database for the study area and FRAGSTATS. The landscape structure in 1256 ha units surrounding six swarms of honey bees captured in the swarm traps was examined. The metrics used to characterize the kind, number, size, shape, and configuration of elements forming the landscape, defined a heterogeneous environment for honey bees that included sufficient food and habitat resources needed for survival, growth, and reproduction. The conclusions that follow from this aspect of the investigation are (1) although classified as a pine forest, management practices and other human activities have altered the landscape and thereby created food and habitat resources suitable for honey bees, (2) the forestry practices associated specifically with road corridor maintenance, stream side corridor protection, RCW management, and Wilderness Area management introduce structural heterogeneity to the forest * Corresponding author. Tel.: +1 979 845 9725; fax: +1 979 862 4820. E-mail address: [email protected] (R.N. Coulson). 1 Present address: P.O. Box 2686, Edinburgh, TX 78540, USA. 0378-1127/$ – see front matter # 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.foreco.2005.05.005 R.N. Coulson et al. / Forest Ecology and Management 215 (2005) 91–102 92 landscape which enriches the diversity and abundance of early successional flowering plants and provides cavity sites needed by honey bees, (3) ranching, farming, and urbanization within the study area also create these conditions, and (4) based on inferences from melissopalynology, honey bees provide pollination services for a broad representation of native and introduced flowering plant species of the pineywoods ecoregion. # 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes

Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and...

متن کامل

Szalanski et al.: Detection of Nosema from Feral Apis mellifera 585 MOLECULAR DETECTION OF NOSEMA APIS AND N. CERANAE FROM SOUTHWESTERN AND SOUTH CENTRAL USA FERAL AFRICANIZED AND EUROPEAN HONEY BEES, APIS MELLIFERA (HYMENOPTERA: APIDAE)

A Polymerase Chain Reaction (PCR) molecular diagnostic survey for the honey bee pathogens Nosema apis Zander and N. ceranae Fries was conducted on feral Africanized honey bee (AHB) and European honey bee (EHB), Apis mellifera L., populations sampled from Mississippi, Arkansas, Texas, Utah, Oklahoma, and New Mexico. Polymerase Chain Reaction – Restriction Fragment Length polymorphism (PCR-RFLP) ...

متن کامل

Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States

Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increa...

متن کامل

Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa

Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topogra...

متن کامل

Parasite Pressures on Feral Honey Bees (Apis mellifera sp.)

Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005